
Advances in Computer Science and its Applications (ACSA) 350
Vol. 2, No. 2, 2012, ISSN 2166-2924
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

Image Steganography Method Based on Brightness
Adjustment

Youssef Bassil

LACSC – Lebanese Association for Computational Sciences
Registered under No. 957, 2011, Beirut, Lebanon

Email: youssef.bassil@lacsc.org

Abstract – Steganography is an information hiding technique in which secret data are secured by covering them into a
computer carrier file without damaging the file or changing its size. The difference between steganography and
cryptography is that steganography is a stealthy method of communication that only the communicating parties are
aware of; while, cryptography is an overt method of communication that anyone is aware of, despite its payload is
scribbled. Typically, an irrecoverable steganography algorithm is the algorithm that makes it hard for malicious third
parties to discover how it works and how to recover the secret data out of the carrier file. One popular way to achieve
irrecoverability is to digitally process the carrier file after hiding the secret data into it. However, such process is
irreversible as it would destroy the concealed data. This paper proposes a new image steganography method for textual
data, as well as for any form of digital data, based on adjusting the brightness of the carrier image after covering the
secret data into it. The algorithm used is parameterized as it can be configured using three different parameters defined
by the communicating parties. They include the amount of brightness to apply on the carrier image after the completion
of the covering process, the color channels whose brightness should be adjusted, and the bytes that should carry in the
secret data. The novelty of the proposed method is that it embeds bits of the secret data into the three LSBs of the bytes
that compose the carrier image in such a way that does not destroy the secret data when restoring back the original
brightness of the carrier image. The simulation conducted proved that the proposed algorithm is valid and correct. As
future work, other image processing techniques are to be examined such as adjusting the contrast or the gamma level of
the carrier image, enabling the communicating parties to more flexibly configure their secret communication.

Keywords – Computer Security, Information Hiding, Image Steganography, Brightness Adjustment

1. Introduction

The past years have seen a growing interest in data
confidentiality to defend against eavesdropping and
unauthorized access to digital properties. This has led to
the development of endless methods and techniques in
the field of information security, two of which are mainly
Cryptography and Steganography. Basically, the former
provides data security by distorting the secret message in
a way that no one, except the communicating parties, can
understand it; whereas, the latter provides data security
by hiding the very existence of the secret message in a
way that no one, except the communicating parties, can
know about its presence [1]. Technically speaking,
cryptography converts the secret data into some other
garbage form of data called encrypted data, which are
then communicated overtly between the sender and the
receiver. On the other hand, steganography embeds the
secret data into what is known as a carrier file, making
the data totally imperceptible to any party including the
sender and receiver themselves, though they know the
exact location of the secret data in the carrier file [2]. In

effect, the advantage of steganography over cryptography
is that although in cryptography the transmitted secret
data cannot be read by unauthorized third parties, they
can still draw attention and reveal the fact that a secret
communication is taking place. In contrast,
steganography is stealthy as it conveys the secret data
through an innocent normal-looking carrier file, avoiding
arousing an eavesdropper’s suspicion. Steganography has
two foremost requirements: The first one is
imperceptibility of the carrier file which refers to totally
obscuring the secret data in the carrier file without
damaging it or changing its original size [3]. The second
one is irrecoverability of the secret data which refers to
preventing eavesdroppers from recovering the secret data
by reverse-engineering the steganography algorithm. In
image steganography, one way to promote
irrecoverability is to digitally process the carrier image
after concealing the secret data into it, for instance,
flipping, rotating, mirroring, adjusting its contrast or even
its brightness. Consequently, if by any means the carrier
image is inspected by eavesdroppers, the contained secret
data would be already transformed and no one can tell

Youssef Bassil, ACSA, Vol. 2, No. 2, pp. 350-356, 2012 351

that they even existed. However, this comes with a price
as digitally processing the carrier image is often an
irreversible process [4] which would destroy the secret
data hidden inside the carrier image and prevent them
from being recovered by the concerned parties.

This paper proposes a new image steganography
method based on adjusting the brightness of the carrier
image after covering the secret data into it. The method is
geared by a parameterized algorithm which allows the
communicating parties to specify 1) the amount of
brightness to apply on the carrier image after the
completion of the covering process; 2) the color channels
whose brightness should be adjusted; and 3) the bytes that
should house the secret data. The proposed method is
designed for textual data as well as for any form of data
as long as they can be converted into a binary format. The
secret data are covered in the three least significant bits
(LSB) of the bytes composing the carrier image.
However, these bytes are not selected sequentially as in
traditional LSB steganography techniques; rather, they
are selected based on their intensities in such a way that
does not destroy the secret data when restoring back the
original brightness of the carrier image. Fundamentally,
the fact of transforming the carrier image into a brighter
version shadows the hidden secret data, preventing their
recovery by unauthorized parties.

2. Image Steganography and Its Applications

In essence, image steganography is drawn upon the
visual limited capabilities of the human visual system
(HVS) which cannot detect the slight intensity variation
of the pixels of an image [5]. As a result, hiding the secret
data into the LSBs of the pixels composing the carrier
image would change marginally the color intensities of
the image so much so that it would be unnoticeable by a
human naked eye. Thus, an unauthorized observer cannot
distinguish between the original carrier image and the
tampered one, i.e., the one that carries the secret data into
the LSBs of its pixels.

The applications of image steganography are diverse;
they include secret communication, digital watermarking,
and data integrity [6, 7].

Secret Communication: Characteristically,
transmitting a cryptographic message may raise unwanted
suspicions as it travels overtly. Besides, cryptography is
restricted by law in many situations. Contrariwise,
steganography does not publicize secret communication;
and hence, it evades the message from being detected and
recovered by malicious parties.

Digital Watermarking: A secret copyright mark also
known as digital watermark can be embedded inside an
image to verify its authenticity. A digital watermark can
be used to identify the owner of an intellectual property
such as an image, audio, or video file. It also helps fight
against copyright infringements as it detects the source of
illegally copied materials.

Data Integrity: It refers to the assertion of data that
they are accurate after they have been transmitted over
the Internet and received by the recipient. Using
steganography, a special mark can be embedded within
an image file to determine that no variations,

compromises, or damages have occurred to the image
after it is received by the recipient. This form of
steganography is referred to as Digitally Signing images
so as to be able to confirm their reliability at any time.

3. State-of-the-Art in Image Steganography

So far, massive research work has been conducted in
the development of steganography for digital images.
One of the earliest techniques is the LSB technique which
obscures data communication by inserting the secret data
into the insignificant parts of the pixels of an image file,
more particularly, into the least significant bits (LSB) [8].
The modified version of the image, which is called carrier
file or stego file, is then sent to the receiver through a
public channel. The foremost requirement of the LSB
technique is that it should not exhibit any visual signs in
the carrier image so as to not give any indications that
secret data are being communicated covertly.

Basically, the LSB technique is an insertion-based
image steganography method that embeds secret data into
uncompressed computer image files such as BMP and
TIFF. In this technique, the data to hide are first
converted into a series of bytes, then into a series of
smaller chunks each of which is of size n bits. Then, n
LSBs of the pixels of the carrier image are replaced by
each of the chunks of the original data to hide. The
ultimate result of this operation is a carrier image
carrying the secret data into the LSBs of its pixels. As the
color values that are determined by LSBs are
insignificant to the naked eye, it is hard to tell the
difference between the original image and the tampered
one, taking into consideration that no more than a certain
number of LSBs were used to conceal the secret data;
Otherwise, visual artifacts and damages would be
produced in the carrier image which would in turn draw
suspicions and raise attention about something unusual in
the carrier image. For instance, in 24-bit True Color BMP
images, using more than three LSBs per color component
to hide data may result in perceptible artifacts in the
carrier image [9]. As an illustration for the LSB
technique, let’s say that the letter H needs to be hidden
into an 8-bit grayscale bitmap image. The ASCII
representation for letter H is 72 in decimal or 01001000
in binary. Assuming that the letter H is divided into four
chunks each of 2 bits, then four pixels are needed to
totally hide the letter H. Moreover, assuming that four
consecutive pixels are selected from the original image
whose grayscale values are denoted by P1=11011000,
P2=00110110, P3=11001111, and P4=10100011, then
substituting every two LSBs in every of these four pixels
by a 2-bit chunk of the letter H, would result in a new set
of pixels denoted by P1= 11011001, P2=00110100,
P3=11001110, and P4=10100000. Despite changing the
actual grayscale values of the pixels, this has little impact
on the visual appearance of the carrier image because
characteristically, the Human Visual System (HVS)
cannot differentiate between two images whose color
values in the high frequency spectrum are marginally
unalike [10].

On the other hand, other steganography techniques
and algorithms for digital images have been proposed and

Youssef Bassil, ACSA, Vol. 2, No. 2, pp. 350-356, 2012 352

researched both in spatial and frequency domains. They
include masking and filtering [11], encrypt and scatter
[12], transformation [13], and BPCS [14] techniques.

Masking and Filtering Technique: This technique is
based on digital watermarking but instead of increasing
too much the luminance of the masked area to create the
digital watermark, a small increase of luminance is
applied to the masked area making it unnoticeable and
undetected by the naked eye. As a result, the lesser the
luminance alteration, little the chance the secret message
can be detected. Masking and filtering technique embeds
data in significant areas of the image so that the
concealed message is more integral to the carrier file.

Encrypt and Scatter Technique: This technique
attempts to emulate what is known by White Noise Storm
which is a combination of spread spectrum and frequency
hopping practices. Its principle is so simple; it scatters the
message to hide over an image within a random number
defined by a window size and several data channels. It
uses eight channels each of which represents 1 bit; and
consequently, each image window can hold 1 byte of data
and a set of other useless bits. These channels can
perform bit permutation using rotation and swapping
operations such as rotating 1 bit to the left or swapping
the bit in position 3 with the bit in position 6. The niche
of this approach is that even if the bits are extracted, they
will look garbage unless the permutation algorithm is first
discovered. Additionally, the encrypt and scatter
technique employs DES encryption to cipher the message
before being scattered and hidden in the carrier file.

Transformation Technique: This technique is often
used in the lossy compression domain, for instance, with
JPG digital images. In fact, JPG images use the discrete
cosine transform (DCT) to perform compression. As the
cosine values cannot be calculated accurately, the DCT
yields to a lossy compression. The transformation-based
steganography algorithms first compress the secret
message to hide using DCT and then integrate it within
the JPG image. That way, the secret message would be
integral to the image and would be hard to be decoded
unless the image is first decompressed and the location of
the hidden message is recovered.

BPCS Technique: This technique which stands for
Bit-Plane Complexity Segmentation Steganography, is
based on a special characteristic of the Human Visual
System (HVS). Basically, the HVS cannot perceive a too
complicated visual pattern as a coherent shape. For
example, on a flat homogenous wooden pavement, all
floor tiles look the same. They visually just appear as a
paved wooden surface, without any indication of shape.
However, if someone looks closely, every collection of
tiles exhibits different shapes due to the particles that
make up the wooden tile. Such types of images are called
vessel images. BPCS Steganography makes use of this
characteristic by substituting complex regions on the bit-
planes of a particular vessel image with data patterns
from the secret data.

4. Proposed Solution

This paper proposes a new image steganography
method for hiding digital data, regardless of their types -

whether text, files, or documents, into uncompressed
image files. The method is based on adjusting the
brightness of the carrier image after covering the secret
data into it. The algorithm used is parameterized, in that,
it enables the communicating parties to decide on certain
parameters prior to starting their secret communication.
The first parameter specifies the amount (level) of
brightness to apply on the carrier image after hiding the
secret data into it. The second parameter specifies the
color channels whose brightness is to be adjusted.
Possible options are the Red channel alone, the Green
channel alone, the Blue channel alone, the three channels
altogether (overall image), or even a combination of
them. The third parameter specifies, based on their
intensities, the bytes into which the secret data are to be
covered. These parameters are stored in predefined
locations in the carrier image after adjusting the carrier’s
brightness. The secret data are covered in the three least
significant bits (LSB) of the bytes that make up the
carrier image. However, the selection of these bytes is not
done sequentially as in traditional LSB steganography
techniques; rather, it is done based on the third parameter
which specifies the carrier bytes based on their
intensities. The reason for this strategy is to avoid the
destruction of the hidden secret data after restoring back
the original brightness of the carrier image. Reverting
back to the initial brightness level of the carrier image is
necessary to recover the secret data.

4.1 Digital Image Processing – Adjusting
Brightness

Digital image processing is the use of computer
algorithms to process digital images in such a way that
changes the image’s properties including color, shape,
orientation, sharpness, and brightness, among others [15].
In particular, brightness refers to the luminosity of an
image. Adjusting the brightness of an image lightens or
darkens all its colors equally by shifting its pixel intensity
values up or down a tonal range. Mathematically, to
increase the brightness of an image, a value must be
added to the bytes that make up the image [16].
Unfortunately, increasing the brightness of an image can
be sometimes irreversible as the resulting bytes may go
above 255 which is the maximum value 8 bits can
represent. As a result, bytes whose original values were
255 before increasing the image brightness would be
equal to the bytes whose values became 255 after
increasing the image brightness. Hence, any reversal
process would make the original image loses some of its
brightness information. Likewise, the opposite is true for
negative values when byte intensities fall below 0 after
decreasing the brightness of the image. Below is a sample
code written using C#; its function is to adjust the
brightness of an image by increasing it by an amount of
30.

private void IncreaseBrightness (int amount)
{
 Bitmap bitmap = new Bitmap(“c:\img.bmp”);

 int red, green, blue;

Youssef Bassil, ACSA, Vol. 2, No. 2, pp. 350-356, 2012 353

 for (int y = 0; y < bitmap.Height; y++)
 {
 for (int x = 0; x < bitmap.Width; x++)
 {
 Color c = bitmap.GetPixel(x, y);

 red = (c.R + amount > 255) ? 255 : (c.R + amount);
 green = (c.G + amount > 255) ? 255 : (c.G + amount);
 blue = (c.B + amount > 255) ? 255 : (c.B + amount);

 bitmap.SetPixel(x, y, Color.FromArgb(red, green, blue));
 }
 }
 }

4.2 Mathematical Conception of the Proposed
Method

Essentially, adjusting the brightness of a digital image
has many challenges, especially when employed in the
context of steganography. This section tackles these
challenges, paving the way for the mathematical
conception of the proposed method.

Irreversibility: Basically, to increase the brightness
of an image, the values of its composing bytes must be
increased by some integer value. However, since 255 is
the maximum value a byte can represent, increasing the
image brightness may result in some byte values above
255. For instance, increasing the brightness of an image
by an amount of 1 would make all bytes whose values are
255 to go above 255. Likewise, increasing the brightness
by an amount of 40, would make all bytes whose values
are 216 to go above 255. To remedy this problem, all
pixels whose values went over 255 after adjusting the
brightness of the image should be set to 255. As a result,
all pixels whose original values before increasing the
brightness of the image were 255 would be equal to all
pixels whose values became 255 after increasing the
brightness of the image. Therefore, one cannot determine
the original value of a byte whose value became 255 after
increasing the brightness of the image. For this reason,
adjusting the brightness of an image is often an
irreversible process. More importantly, the reversal
operation can have very little impact on the human eye as
the HVS (Human Visual System) cannot differentiate
between slight variations in color intensities; however, it
has a damaging impact on steganography as the hidden
secret information would be partially destroyed.

A simple solution for this problem is not to hide the
secret data in the bytes whose values would become
greater than 255 after increasing the brightness of the
image. For instance, if the amount of brightness to be
applied is +10, the secret data should not be stored in the
bytes whose values including their tampered LSBs are
greater than 244 such as:

COVER(byte[i], secret_data[j]) IF COVER(byte[i],
secret_data[j]) < 255-brightness_level. (1)

The reason for taking into consideration the tampered

LSBs as part of the byte values is because the secret data
may, in some cases, increase these values to greater than
255-brightness_level. Although, this method sounds
plausible, it is in fact not, as digital images are sparse in

high-intensity colors. This means that the secret data
would be concealed more likely in a sequential manner in
the carrier image, making them easier to be detected and
recovered by eavesdroppers. A statistic conducted on 25
images, showed that on average only 3791 out 2,359,350
bytes have their values above 244.

Sparsity of high-intensity colors: Using the
previously conceived solution (1), the secret data will end
up being stored sequentially in the carrier image because
digital images have very few bytes whose values are
within the spectrum of high-intensity colors. A far more
stealthy and effective solution would be to conceal the
secret data into any byte, not necessarily high-intensity
ones. An upperbound_intensity parameter is introduced to
indicate the range of intensities from which the carrier
bytes should be selected to store the secret data. This
solution can be mathematically defined as follows:

For the covering process:

1. byte[i] = upperbound_intensity IF byte[i]>=
lowerbound_intensity AND byte[i] <=
upperbound_intensity , WHERE
upperbound_intensity+brightness_level<255
AND lowerbound_intensity=
SETnLSBs(upperbound_intensity , 0)

2. COVER(byte[i], secret_data[j]) IF byte[i] <
lowerbound_intensity

For the uncovering process:

3. UNCOVER(byte[i]- brightness_level) IF byte[i]

- brightness_level < upperbound_intensity

In the covering process, statement (1) ensures that the
bytes bearing no secret data would have values greater or
equal to upperbound_intensity+brightness_level after
increasing the brightness of the image; while, statement
(2) ensures that the secret data are stored in bytes whose
values would be less than upperbound_intensity+
brightness_level after increasing the brightness of the
image. Accordingly, secret data can be reliably uncovered
using statement (3) by looking for all bytes whose values
are less than upperbound_intensity after decreasing the
brightness of the image.

As a result, the proposed method can conceal data in
any byte of the image regardless of its intensity; thus,
solving the problem of sparsity of high-intensities bytes
by randomly scattering secret data over the carrier image
and not storing them sequentially. This is not to mention
that the proposed method is reversible despite adjusting
the brightness of the carrier image. Using a pseudo-code,
the proposed method can be expressed as follows:

// predefined or user selection
brightness_level = 20

// predefined  the secret data will be hidden in the 3 LSBs
// of every byte
n = 3

// predefined or user selection
upperbound_intensity = 100

Youssef Bassil, ACSA, Vol. 2, No. 2, pp. 350-356, 2012 354

// set the n LSBs of upperbound_intensity to 0  100 having
// its n=3 LSBs=0 is 96
lowerbound_intensity = SetnLSBs(upperbound_intensity, n,
0)

// 1. Preprocessing the carrier image
for_all_bytes_in_the_carrier_image DO:
if (byte[i] >= lowerbound_intensity && byte[i] <=
upperbound_intensity)
{
 byte[i] = upperbound_intensity
}

// 2. The covering process
for_all_bytes_in_the_carrier_image DO:
if (byte[i] < lowerbound_intensity)
{
 Cover(byte[i] , secret_data[j])
}

// 3. Increasing brightness by brightness_level

// 4. The uncovering process
for_all_bytes_in_the_carrier_image DO:
if (byte[i] - brightness_level < upperbound_intensity)
{
 secret_data[j] = Uncover(byte[i] - brightness_level)
}

4.3 The Proposed Algorithm

The proposed algorithm comprises several steps to be
executed in order to cover secret data into the bytes of a
digital image. The steps are as follows:

1. The sender has to specify three parameters: The first

parameter, denoted by brightness_level, is the
brightness level to be applied on the carrier image
after covering the secret data into it. The second
parameter is the color channels whose brightness
should be adjusted. It is denoted by brightness_mode
and it has five different values: 1 indicating that only
the Red channel should have its brightness adjusted,
2 indicating that only the Green channel should have
its brightness adjusted, 3 indicating that only the
Blue channel should have its brightness adjusted, 4
indicating that both the Red and Green channels
should have its brightness adjusted, 5 indicating that
both the Red and Blue channels should have their
brightness adjusted, 6 indicating that both the Blue
and Green channels should have their brightness
adjusted, and 7 indicating that the Red, Green, and
Blue channels should have their brightness adjusted.
The third parameter, denoted by
upperbound_intensity, is the range of intensities from
which the carrier bytes are to be selected.

2. The secret data are converted into a binary form such
as M={m0, m1, m2,…,mn-1} where m is a bit
composing the secret data, and n is the total number
of bits.

3. The carrier image is preprocessed using the
following equation: byte[i] = upperbound_intensity
IF byte[i]>= lowerbound_intensity AND byte[i] <=
upperbound_intensity , WHERE
upperbound_intensity+brightness_level<255 AND

lowerbound_intensity= SETnLSBs(upperbound_
intensity , 0)

4. A carrier byte is selected from the carrier image to
store bits of the secret data. It is denoted by byte[i]; it
is not selected sequentially but such as byte[i] <
lowerbound_intensity where the step of i depends on
the second parameter brightness_mode. It is worth
noting that lowerbound_intensity is derived from the
third parameter upperbound_intensity such as
lowerbound_intensity= SETnLSBs(upperbound_
intensity , 0)

5. The three LSBs of byte[i] are substituted by the three
bits of the secret message M such as byte[i]={ bi0,
bi1, bi2, bi3, bi4, mj, mj+1, mj+2 } where byte[i] is the ith
carrier byte into which secret data M are to be
hidden, b is a bit from byte[i], and mj is the jth bit
from the secret data M. This step is repeated until all
m are exhausted; thus completing the covering
process.

6. The brightness of the carrier image is increased by
adding to its bytes a value equal to the first parameter
brightness_level. In fact, not all bytes are affected,
only the ones that are part of the color channels
indicated by the second parameter brightness_mode.

7. The three parameters brightness_level ,
brightness_mode, and upperbound_intensity that
were already specified by the sender have to be
communicated with the receiver prior to starting the
secret communication. In effect, many solutions are
possible, one of which is sending them via email, or
handing them over the phone, or injecting them at the
end of the carrier image, or embedding them into
some predefined pixels locations in the carrier image
using the traditional LSB technique.

8. Finally, the carrier image is sent to the receiver.

As for the uncovering process, the receiver has to pick
up the carrier image, extract the parameters
brightness_level, brightness_mode, and
upperbound_intensity out of it, then select the carrier
bytes based on the following formula:
UNCOVER(byte[i]- brightness_level) IF byte[i] –
brightness_level < upperbound_intensity. Then, for every
selected carrier byte, its three LSBs have to be extracted
to eventually build a long string of bits conveying the
sender’s original secret message M.

5. Experiments & Results

As a proof of concept, a simulation software was built
using MS Visual C# 4.0 and MS Visual Studio 2012
under the MS .Net Framework 4.0. The software is
codenamed GhostBit and it is capable of covering and
uncovering secret data using the proposed method and
algorithm. GhostBit has two parts, one for
cover/uncovering textual data such as plaintext messages,
and one for covering/uncovering generic binary data such
as image files, audio files, PDF documents, and
executable programs. Figure 1 shows the main GUI
interface of GhostBit.

Youssef Bassil, ACSA, Vol. 2, No. 2, pp. 350-356, 2012 355

Figure 1. GhostBit Main GUI

The secret message is an extract from wikipedia about

“Eilean Donan Island” [17] and it is equal to:
“Eilean Donan (Scottish Gaelic: Eilean Donnain) is a small island in
Loch Duich in the western Highlands of Scotland. It is connected to the
mainland by a footbridge and lies about half a mile from the village of
Dornie. Eilean Donan (which means simply island of Donnan) is named
after Donnan of Eigg, a Celtic saint martyred in 617. Donnan is said to
have established a church on the island, though no trace of this
remains. The island is dominated by a picturesque castle which is
familiar from many photographs and appearances in film and
television. The castle was founded in the thirteenth century, but was
destroyed in the eighteenth century. The present buildings are the result
of twentieth-century reconstruction. Eilean Donan Castle is the home of
the Clan Macrae. Eilean Donan is part of the Kintail National Scenic
Area, one of 40 in Scotland. In 2001, the island had a population of just

one person.”
The carrier image is an uncompressed 24-bit BMP

image with 1024x768 resolution. The parameters
brightness_level, brightness_mode, and
upperbound_intensity are predefined as
brightness_level=40, brightness_mode=7 (7 indicates
that the bytes of three color channels are to have their
brightness adjusted), and upperbound_intensity=100 (100
indicates that the secret data are to be hidden in the bytes
whose intensities are below 100). These parameters are
transferred along with the carrier image hidden in the last
two pixels whose zero-based coordinates are (1022,767)
and (1023,767). Figure 2 shows the GUI of the covering
process being executed. Figure 3 is the original image
before covering the secret message into it; whereas,
Figure 4 is the carrier image containing the secret
message. Obviously, the brightness of Figure 4 is greater
than of Figure 3 by 40 degrees (value of the parameter
brightness_level).

Figure 2. GUI of the covering process being executed

Figure 3. Original Image before the covering process

Figure 4. Carrier Image after the covering process

Finally, testing the uncovering process proved that the

proposed algorithm is valid as it managed to recover the
secret message out of the carrier image. Figure 5 shows
this process.

Youssef Bassil, ACSA, Vol. 2, No. 2, pp. 350-356, 2012 356

Figure 5. GUI of the uncovering process being executed

6. Conclusions

This paper proposed a novel steganography method
based on adjusting the brightness of the carrier image
after covering the secret data into the three LSBs of its
bytes. In effect, these bytes are not selected in sequence,
but in such a way that preserves the integrity of the
covered data without destroying them after restoring back
the brightness of the carrier image. The simulation
conducted proved that the proposed algorithm is valid
and correct. As a result, changing the brightness of the
carrier image, prior to sending it to the intended recipient,
makes the covered data irrecoverable by third parties and
impossible to discover their presence, unless first, the
brightness level of the carrier image is reverted back to its
original state. Moreover, it is by choosing some and not
all of the color channels to increase their brightness,
reverse-engineering the covering algorithm would be
quite tricky and ambiguous for eavesdroppers, misleading
them from the true location of the covert data.

7. Future Work

As future work, other image processing techniques are
to be investigated such as adjusting the contrast or the
gamma level of the carrier image, giving the
communicating parties more options to parameterize their
secret communication. Furthermore, the proposed method
is to be studied to see how it can be applied on carrier
files other than images such as audio files. A prospective
technique could be adjusting the volume of the audio file
after the completion of the covering process, while not
destroying the carrier audio file or the hidden secret data.

Acknowledgments

This research was funded by the Lebanese
Association for Computational Sciences (LACSC),

Beirut, Lebanon, under the “Stealthy Steganography
Research Project – SSRP2012”.

References

[1] Peter Wayner, “Disappearing cryptography:

information hiding: steganography &
watermarking”, 3rd Edition, Morgan Kaufmann
Publishers, 2009.

[2] Fabien A. P. Petitcolas, Ross J. Anderson and
Markus G.Kuhn, “Information Hiding - A Survey”,
Proceedings of the IEEE, special issue on protection
of multimedia content, vol. 87, no.7, pp.1062-1078,
1999.

[3] Eric Cole, “Hiding in Plain Sight: Steganography
and the Art of Covert Communication”, Wiley
Publishing, 2003.

[4] Rafael C. Gonzalez, Richard E. Woods, "Digital
Image Processing", 3rd edition, Prentice Hall, 2007.

[5] Frank Shih, “Digital Watermarking and
Steganography: Fundamentals and Techniques”,
CRC Press, 2007.

[6] Johnson, N. F. and Jajodia, S., “Exploring
steganography: Seeing the unseen”, Computer
Journal, vol. 31, no.2, pp.26–34, 1998.

[7] W. Bender, D. Gruhl, N. Morimoto, A. Lu,
“Techniques for data hiding IBM Systems Journal”,
vol. 35, no 3, pp. 313-336, 1996.

[8] J. R. Smith and B. O. Comisky, “Modulation and
information hiding in images,” in information
hiding, first international workshop, Germany:
Springer-Verlag, vol. 1174, pp. 207–226, 1996.

[9] B. Pfitzmann, “Information hiding terminology”, in
Information Hiding, First International Workshop,
vol. 1174, pp. 347–350, Springer, 1996.

[10] Tovée, Martin J., “An introduction to the visual
system”, Cambridge University Press, 2008.

[11] R. Anderson, F. Petitcolas, “On the limits of
steganography,” IEEE Journal on Selected Areas in
Communications, vol. 16, 1998.

[12] Ross J. Anderson, “Information hiding: 1st
international workshop”, volume 1174 of Lecture
Notes in Computer Science, Isaac Newton Institute,
Springer-Verlag, Germany, 1996.

[13] T. Zhang and X. Ping, “A Fast and Effective
Steganalytic Technique against JSteg-like
Algorithms”, Proceedings of the 8th ACM
Symposium, Applied Computing, ACM Press,
2003.

[14] Eiji Kawaguchi and Richard O. Eason, “Principle
and applications of BPCS-
Steganography”, Proceedings of SPIE: Multimedia
Systems and Applications, vol.35, no.28, pp.464-
473, 1998.

[15] Maria Petrou, Costas Petrou, “Image Processing:
The Fundamentals”, 2nd edition, Wiley, 2010.

[16] J.R. Parker, "Algorithms for Image Processing and
Computer Vision", 2nd edition, Wiley, 2010.

[17] Wikipedia article entitled Eilean Donan, URL:
http://en.wikipedia.org/wiki/Eilean_Donan

